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The effect of high-frequency translational harmonic vibrations on the onset of thermocapillary convection in a horizontal liquid 

layer, bounded above by a free surface and below by a solid wall, is investigated by averaging the convection equations. It is 

shown that longitudinal vibrations have no effect on convective instability. If the direction of the vibration contains a transverse 

component, and the action of the vibration has a stabilizing effect: the free boundary of a uniform liquid is smoothed and thermal 

convection of a non-uniform liquid may be suppressed. The maximum stabilizing effect is obtained for vertical vibrations. 

0 2002 Elsevier Science Ltd. All rights reserved. 

The problem of the effect of high-frequency vertical vibrations on the onset of convection in a region 
with a solid boundary was considered previously in [ 11, and the method of averaging was used to derive 
a closed autonomous system for the averaged hydrodynamic field. It has been shown [l, 21, that vertical 
vibrations hinder the onset of thermogravitational convection in a horizontal liquid layer and can even 
give rise to a state of relative equilibrium that is absolutely stable. In the case of vibrations in an arbitrary 
direction, it has been shown [3],$ that vibrations can have both a stabilizing and a destabilizing effect; 
it has been established, for example, that for all directions of vibration, differing from the vertical 
direction, gravitational convection can occur in a liquid layer not only when it is heated from below 
but also from above. The averaged equations [3] were analysed in [4,5] for the interesting special case 
of weightlessness conditions. An experimental confirmation of vibration effects [l-5] were given in [6, 
71. The basis of the averaging method for convection problems in the region of a solid boundary was 
presented in [8, 91. The method of averaging has been developed [lo] for dynamical systems with 
constraints. 

A number of publications have been devoted to investigating thermocapillary convection (see the 
review [ 111). 

The problem of Oberbek-Boussinesq thermocapillary convection in a liquid layer with a free non- 
deformable boundary in the case of vertical vibrations was considered for the first time by Briskman 
[12], and was investigated further in [13]. The following approach was used to investigate vibration 
convection in regions with a free boundary [14, 151: the initial equations were written in general form, 
averaging was carried out, and a changeover was then made to the Oberbek-Boussinesq equations. 
This approach was then used [16]§ to investigate convection in a horizontal layer with a deformable 
free boundary; it was shown that in the case of a slightly non-isothermal liquid the general Oberbek- 
Boussinesq equations can be taken as the initial equations, i.e. the density is assumed to be variable 
not only in the mass forces but also in the inertial terms. 

In this paper we investigate the effect of translational harmonic vibrations in an arbitrary direction 
on the thermocapillary instability in a thin horizontal layer of a viscous incompressible liquid, bounded 
by a deformable free boundary and a solid wall. The Krylov-Bogolyubov averaging method is applied 
to the generalized Oberbek-Boussinesq convection equations, on the assumption that the vibration 
frequency o is high and the velocity amplitude a is finite. An equilibrium solution of the average 

tPrik1. Mot. Mekh. Vol. 66, No. 4, pp. 572-582, 2002. 
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problem is obtained and its stability is investigated. The cases when the liquid is uniform and the free 
boundary is deformable are considered, and also the case when the liquid is non-uniform and the free 
boundary is, on average, non-deformable. The interaction between the thermocapillary and the thermo- 
gravitational mechanisms of convective instability is investigated. 

1. FORMULATION OF THE PROBLEM 

Consider an infinite horizontal layer of viscous incompressible heat-conducting liquid, bounded below 
by a solid wall x3 = h and bounded above by a free deformable surface x3 = E,‘(_u,, x2, t). Heat-exchange 
conditions of general form are specified on each of the boundaries. We will assume that the mean 
thickness of the layer h is fairly small, so that the equation of state can be taken in the form 

Surface tension forces with coefficient CJ = o. - or(T’ - 7’;) act on the free boundary, where or = 
1 WaT’ I. Above the liquid layer there is a gas, whose density is negligibly small and whose temperature 
and pressure are constant. It is assumed that the layer as a whole undergoes plane translational harmonic 
vibrations in the direction of the vector s = (cos cp, 0, sin cp) which vary as (a/6) cos Gjt, where cp is the 
angle of the direction of the vibration, so that cp = 0 corresponds to horizontal vibrations while cp = 
n/2 corresponds to vertical vibrations. We will choose the system of coordinates in such a way that the 
x3 axis coincides with the direction of the gravity force, while the origin of coordinates is taken on the 
unperturbed free boundary. The x3 coordinate will henceforth sometimes be denoted by z. 

Suppose v’ is the relative velocity vector, T’ is the temperature, measured from a certain constant 
value T&p’ is the deviation from atmospheric pressure, p. is the density, l.3 is the coefficient of thermal 
expansion, v, x are the coefficient of kinematic viscosity and the thermal diffusivity, g = yg, where 
y = (0, 0, 1) is th e unit vector of the x3 axis, g is the acceleration due to gravity, w, = aQcos 63 . s is 
the transfer acceleration, and a is the amplitude of the vibration velocity. We will change to dimensionless 
variables bl choosing as the scales of length, time, velocity, pressure and temperature gradient h, h2/v, 
v/h, pov2/h , A respectively, and we will denote the dimensionless variables by the same letters as the 
dimensional variables. 

In a moving system of coordinates connected with the vibrating layer, we will write the convection 
equations in the form 

(1.1) 

div v’ = 0 dT’ = Pr-’ AT’ 
’ dr 

System (1.1) differs from the Oberbek-Boussinesq convection equations by the term ET’dv’idt. The 
use of a more general initial model for a slightly non-isothermal liquid (E + 0) does not lead to any 
change in the results. 

The following conditions must be satisfied on the free boundary x3 = {‘(xi, x2, t) 

(1.2) 

(1.3) 

ritn; -p’n;=Z(C-:T’)Kn;, rIk =z+%, k=I,2,3 

g-BiT’=6, (I.41 

Here rik are the components of the viscous stress tensor, 1’ is the vector of the inward normal to the 
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free boundary, n’ is its unit vector and Kis its mean curvature, which can be calculated from the formula 

On the solid wallX3 = 1 the boundary conditions have the form 

(1.5) 

Problem (1 .l)-( 1.5) contains the following dimensionless parameters 

Gjh* 
E=PAh, co=- 

V 

Here E is the Boussinesq parameter, w is the dimensionless vibration frequency, Re is the vibration 
Reynolds number, Ga is the Galileo number, Pr is the Prandtl number, Ma is the Marangoni number, 
C is the dimensionless surface tension coefficient and Bi, Bo are the Biot numbers. 

2. THE ASYMPTOTIC FORM OF HIGH FREQUENCIES 

Averaging. We will henceforth be concerned with the asymptotic form of the solution of problem 
(l.l)-(1.5) in the case when the frequency o is high, while the vibration Reynolds number is finite: 
Re = O(l), w + ~0. We can then assume that the following conditions are satisfied for the dimensional 
frequency 6 

h<E<min h2 h2 -_ . ( 1 - 
c iii V’X 

where c is the velocity of sound. The upper limitation denotes that the vibration period must be much 
less than the characteristic times of action of the viscosity and the thermal conductivity. Breakdown of 
the left-hand inequality denotes that we must taken into account the compressibility of the liquid, while 
breakdown of the right-hand inequality means that we must take into account the vibration boundary 
layers. Estimates show that a range of the frequencies Sexists for which the above-mentioned conditions 
are compatible. 

We will apply the Krylov-Bogolyubov averaging method to problem (l.l)-(1.5) in the same way as 
before [l]. In the addition to the slow time t we will introduce the fast time r = cot. We will seek an 
asymptotic solution as 0 3 ~0 in the form of the sum of smooth and fast components, having zero mean 
with respect to the time z 

v’= v&t)+ $x,t,‘I), p’= p(x,t)+6$(x,t,‘5) 

T’=T(x,t)+-$t.~), 5’=5(x,,x,.t)+~S(~,.x,,t,~) (2.1) 

Equations for the fast unknowns are obtained after substituting expressions (2.1) into Eqs (1.1) and 
separating the principal vibration terms as o + 00. As a result we obtain the following system 

(I-ET)$=-vj+Re(l-ET)cosr.s. div?=O (2.2) 

g+(?,VT)=O Q-3) 
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We will now consider the boundary conditions. The principal vibration terms in the kinematic boundary 
condition (1.2) give an equation for the fast component of the free boundary 

at at at 
x3 =&x,,x,,t): -=-6, --3, -+c, 

ar ax, ax2 (2.4) 

We will assume that, in the dynamic boundary condition (1.3) the dimensionless parameters are 
independent of w. We then obtain from (1.3) the following boundary condition for the pulsation pressure 

x3 =&x,,x,,t): p=o (2.5) 

Since the order of Eq. (2.2) is lower than the order of the corresponding equation in system (l.l), for 
the pulsation velocity V on the solid wall x3 = 1 we formulate a boundary condition similar to that of 
an ideal fluid 

x3=1: un=o (2.6) 

It is easy to show that the solution of problem (2.2)-(2.6) which is 2n-periodic with respect to t and 
which has zero mean, can be written in the form 

C=Rew(x,t)sin7, j=Re@(~,t)cos~, f=Re(w,VT)cos7 

<=-Re(w,l)cosT, I- -(-&$I) (2.7) 

Here W(X, t) and @(x, t) are the amplitudes of the pulsation velocity and pressure for which we have 
the problem 

(I-ET)w=-V@+(I-aT)s, divw=O (2.8) 

x3 =~(x,,x*,t): Q,=o; x3 =I: w, =o 

Formulae (2.7) give expressions for the fast components in terms of the smooth components. 
Substituting expressions (2.7) into (2.1) and then substituting the expressions obtained into system 
(l.l)-( 1.5) averaging over the fast time r and retaining terms of the order of unity as o _j CQ, we obtain 
a closed autonomous system for the mean values: the unknowns v, 9 and T. As a result of averaging a 
vibration-induced mass force [lo] 

F, = iRe’(w.V)V@ 

appeared in the equation of motion and vibration-induced stresses, proportional to the square of the 
vibration Reynolds number, appeared in the dynamic boundary condition. 

In the averaged system we take the limit as E + 0, assuming that T = O(1) and 5 = O(l), and retain 
the principal terms. We arrive at the problem 

$=-vq+*v-GrTy+~C(wnrotT(w-s)+(w.V)T(w-s)) 
dT 
- = Pr-’ A.T, div v = 0 
dt 

(I-&T)w=-V@+(I-&T)s, divw=O 

2 

q=p-Gar+w2. $=$+(v,v) 

The boundary conditions have the form 

(2.9) 

x3 =Qx,,x,,r): (v,l)=$ I=(-$~.I) 
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Tiknk -(q+Gac-$($+$f(w,l)))ni = 

= *K(C-FT)r++Fg, i=1,2 (2.10) 

$-BiT=S,. cp=o 

x3=1: v=O, g+B,T=Z,, w, =o 
3 

3. THE EQUILIBRIUM SOLUTION AND ITS STABILITY 

We will investigate problem (2.9) (2.10) further. We will assume that the heat-exchange conditions are 
specified in such a way that an equilibrium solution exists with a linear temperature profile 

2 Re2 
v0 =o, T, =z, q. =-Gr%+ -cos2 cp 

4 

w. =(coscp,O,O), a0 = z-c; sincp, co =0 
( 1 

(3.1) 

We will investigate its stability by the linearization method, assuming 

v=vo+v,, q=qo+q,. T=T,+T 

w=wo+w,, @=(I+)+@,, C=Co+& 

Assuming the perturbations to be infinitesimal and proportional to exp ht, we obtain the following 
eigenvalue problem for the corresponding amplitudes 

2 

hv=-Vq+Av-GrTy -$--asincpw,y 

hT=Pr-‘AT-v,, divv=O 

(I-EZ)W=-V@-&sincpTy, divw=O 

(3.2) 

After linearization, the boundary conditions take the form 

X3 =O: u3 =hc, Zi3 

@+sincpc=O, g-Bi(T+c)=O 
3 

x3=1: v=o, x+B,T=O, w3 co 
2x3 

(3.3) 

We can conclude from the form of eigenvalue problem (3.2) (3.3) that horizontal (cp = 0) high-frequency 
vibrations have no effect on the onset of convection in a thin liquid layer with a deformable free boundary. 
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We will further consider the case when cp f 0, which enables us to make the following replacement 

@=sincpY, w3 =sincpW3 

Eliminating the pressure q and the horizontal components u ,, U? and wl, w:, we arrive at the problem 

hAv,=A*v3-G~A,T-~,EA,W~, hT=Pr-‘AT-v3 

, (I -a)W3 =-~-ET 
3 

x3 =o: u3 =x$ - 
a*v, 
s+A,v, =$fA,(T+S, 

3 

2A,$h2+A ~=-CA;~+GaA,&prA,W3 
3 3 2x3 

g--Si(T+@=O, Y+<=@ 
3 

g+B,T=o, W, =0 
3 

(3.4) 

Here 

Hence, when cp # 0 the action of a high-frequency vibration is characterized by the single parameter 
ps, which includes both the direction cp and the amplitude (I of the vibration velocity, unlike 
Rayleigh-Benard vibration convection, which is characterized by two vibration parameters - the velocity 
and the direction of the vibration [3, 17). Moreover, in the case of Rayleigh-Benard convection, 
horizontal vibrations amplify thermogravitational convection [3, 171. 

We will introduce normal perturbations, assuming 

Then, eigenvalue problem (3.4) takes the form 

hLv = L*v +GrPra28+p,EPra2w, APrO= LO-v 

z=O: v =hPr6, D*v +a*v =Maa2(O+6) 

(3a2 +h)Du -0’~ = Pra*((Ca’ +Ga)6-p,yw) 

DO-Bi(8+6)=0 

2=~: v =D~ =o, De+B,e=o 

(3.5) 

The functions w and Q, are the solutions of the problem 

L@=E(w-De), (I-EZ)W=-DO--& 

z=o: @+6=0; z=l: w=o (3.6) 

We will separate the principal terms as E -+ 0 in the expression for a(z) and w(z), assuming 

@=@o+E@,+..., M’=w~+&w,+ 

Substituting these expansions into (3.6), we obtain the following problems 

L@, = 0, w. = -Da,; Qo(0) = -6, we(l) = 0 (3.7) 

L@, =w,-De, w, =-DC’, -8+zw,; @,(O)=O, w,(I)=0 (3.8) 
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Problem (3.7) has the solution 

@,(~)=6(thashaz-chaz), W,(Z)=-&%(thachaz-shaz) 

Retaining principal terms in E, as E + 0 we can write problem (3.5) in the form 

hLu =f.*u +Raa28+&a2(wo+&w,), hPr8=L8-v 

w, = -D@, -e+ zw(), Lo, = wg -De 

z=o: u =liPr& 0% +a2v =Maa*(O+ti) 

(3a*+h)Du -D3u =Pra*(Ca*+Ga+~.~,atha)i5-&,w, 

De-Bi(e+6)=0, q =o 
(3.9) 

z=l: v =Dv =O, De+B,e=O, w,=O 

Here Ra = GasPr is the gravitational Rayleigh number and R, = lt&Pr is the vibration Rayleigh number. 
We can further consider different types of convective instability in a layer with a deformable free boundary. 

Thermocapillary convection in a layer of uniform liquid. We will consider Marangoni convection in a 
thin layer of uniform liquid, assuming E = 0, Ra = 0, R, = 0. The following eigenvalue problem 
corresponds to this case 

UU = Lt. hPre= LO-v 

z=O: u =hPr& D?J +a% =Maa*(e+@ 

(3a*+li)Du -D3u =Pra*(Ca* +Ga+psatha)6 

De-Bi(f3+6)=0 

(3.10) 

z=I: u =Du =O, De+B,e=O 

This problem has been investigated in the case when pS = 0 in numerous papers (see the review [IS]). 
It has been shown that the deformation of the free boundary has a considerable influence on the long- 
wave (a -+ 0) instability. Moreover it has been established that as the surface tension C increases the 
free boundary is smoothed out and the critical Marangoni numbers approach values corresponding to 
a non-deformable free boundary. In the case considered here we can achieve this effect by increasing 
the vibration parameter l.~~, since it enhances the effect of surface tension 

C, = C+Ga/a* +pS tha/a 

The contribution of vibration may be comparable with the contribution of gravitational forces. For a 
water layer of thickness h = 1 mm, a vibration frequency w = 100 Hz and an amplitude a/o = 1 mm, 
we have T = 7 x 104, Ga = lo4 and pS = 0.5 x lo4 sin*q. 

In order to confirm these conclusions we will present some asymptotic and numerical results. 

The long-wave asymptotic form. We will consider monotonic instability. Assuming h = 0 in system 
(3.10) and eliminating the function u(z), we obtain the problem 

L3e=o 
z=O: Le=o, L28=Maa2(e+6) 

Cr(3a2DL8-D'LB)=a*(a* +BO+patha)6 

De-Bi(e+tQ=o 
Z=I: Le=me=o, De+B,e=o 

(3.11) 

Here Cr = (PrC)-’ is the capillary parameter, BO = Ga/C is the gravitational Bond number and p = 
l.& is the vibration Bond number. 

We will investigate the behaviour of the eigenvalues Ma(a) as a + 0 by the perturbation method. 
Expanding the unknowns in series in powers of a2 

0=8,+a*8,+ . . . . 6=6,+a26,+ . . . . Ma=Maoa-*+Ma,+Ma*a*+... 
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we obtain boundary-value problems for the coefficients. By solving these problems we obtain the principal 
terms of the asymptotic form of the Marangoni number 

Ma(o) = 

Ma(a) = 

(3.12) 

B. = = (3.13) 

Numerical results. Problem (3.10) was solved by reduction to a transcendental equation, which was 
constructed analytically and numerically by the ranging method. We chose the Marangoni number and 
the frequency of neutral oscillations c as the required parameters and assumed h = ic. The results 
obtained were compared with the asymptotic and known values when u = 0. We investigated monotonic 
and oscillatory instability. 

The existence of oscillatory instability was previously found for Ma(a) < 0 as a + 0 [ll] when 
Ma (a) > 0, a + 00 [18]. However, as calculations show, when Ma > 0 the first loss of stability is 
monotonic. The table shows values of Ma(a) for c = 0, B. = 0, Bi = 0.1, Cr = 0.033 and BO = 0.0049 
(glycerin, h = 0.1 mm) as a function of the parameter u. The asymptotic form (3.12) is satisfied when 
a _j 0. 

In Fig. 1 we show neutral curves of Ma(a) of monotonic instability (the continuous curves) and 
oscillatory instability (the dashed curves). In Fig. 2 we show neutral curves of the oscillatory instability 

a 

5.00 
4.00 
3.00 
2.50 
2.00 
1.50 
1.00 
0.50 
0.10 
0.05 
0.04 
0.03 
0.02 
0.01 
10-j 
lOA 
10-5 

p=o p = 3.3 p = 33 p = 3.3 x 102 p = 3.3 x lo4 

206.71 207.21 207.80 207.95 207.97 
137.72 139.23 140.73 141.06 141.10 
86.66 90.68 93.96 94.61 94.69 
66.84 13.17 77.91 78.81 78.92 
49.59 59.31 66.22 67.50 67.65 
33.76 47.84 58.34 60.32 60.56 
18.92 36.53 53.91 57.14 58.21 
6.98 21.46 54.15 67.90 69.92 
3.31 10.46 67.07 308.44 526.16 
6.12 12.89 71.79 510.90 1.915 x 103 
8.32 15.05 74.25 559.96 2.919 x lo3 

13.11 19.80 79.24 608.41 4.985 x IO3 
26.82 33.48 93.09 658.23 1.021 x 10:’ 

100.90 107.55 167.27 756.37 2.795 x lo4 
9.881 x lo3 9.887 x IO3 9.947 x 10” 1.054 x 10” 7.537 x 104 
9.879 x lo5 9.879 x 105 9.879 x 105 9.885 x IO5 1.054 x 10” 
9.879 x 10’ 9.879 x 10’ 9.879 x 10’ 9.879 x 10’ 9.885 x 10’ 

Table 1 

l- 
Cr = 0 

207.97 
141.10 
94.70 
78.92 
67.65 
60.56 
58.21 
69.94 

529.95 
1.970 x lo? 
3.050 x lo? 
5.383 x 10” 
1.205 x lo4 
4.805 x lo4 
4.800 x lo6 
4.800 x 10” 
4.800 x 10”’ 

Fig. 1 
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-50 

Ma 

c 

0.3 

Fig. 2 

u.4 a 

when Bi = 0, Cr = 0.01, Pr = 0.01, BO = 0 and B0 = CQ. When u = 0 the results of the calculations 
agree with those obtained earlier in [19]. 

Thus, the numerical results show that when cp f 0, high-frequency vibration smooths out the free 
boundary, and the Marangoni numbers approach the values obtained previously in [20]. 

Pearson vibration convection. We will now assume that the free boundary is non-deformable on 
average (6 = 0) and that the liquid is non-uniform (E f 0). In this case problem (3.9) has the form 

hLv = L’LJ +Rac~*8-~a*(D@, +e) 

hPrO= LCI-u, Lo, =-De 

2=0: ?J =o, D*v -Maa*8=0, DO-Bi8=0, 0, =0 (3.14) 

z=l: u =Dv =O, De+B,e=o, Da, +e=o 

Here u = u$Pr = R,E is the vibration parameter. 
Assuming Ra = 0, we obtain the relation between the critical Marangoni number and this parameter 

Ma,@) = minMa(a, CL) 
a 

Calculations showed that the instability is monotonic and the values of Ma, increase as the parameter 
F increases. 

We will represent the parameter F in the form 

i;r = Ma* x2, s* = (a2f.3*popsin2 cp)/(20:) 

where s is the dimensionless vibration velocity. Calculations show that values s*(&, Bi) exist such that 
when s > S* there is absolute stability. For example, s*(m, 0.1) = 0.26, s,(O, 0.1) = 0.95. Similar 
conclusions can be reached for thermogravitational convection, assuming Ma = 0 in problem (3.14) 
and considering the relation Ra,(r), where ? = F/Ra”. We obtain that T*(w, 0.1) = 0.029. 

The interaction of the thermogravitational and thermocapillary mechanisms of instability, when there 
is vibration, can be tracked by investigating the dependence of the critical Rayleigh numbers 

Ra,(Ma, F> = minRa(a, Ma, F) 
a 

Calculations showed that the instability is monotonic while the neutral curves Ra,(Ma) for large values 
of F are close to straight lines 

Ra, = k Ma+ b(ji) 

where k = -8.97, h(10’) = 1232, b(5 x 10”) = 2536, b(l0’) = 3551. As the parameter F increases the 
boundary of stability departs to infinity. 
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If we take the Oberbek-Boussinesq equations in the initial model, then instead of problem (3.14) 
we obtain the problem 

hLv = L*u +Raa*O-ii(a*sincp(D@+Bsincp)+iacoscpQ) 

hPre= L8-v, LQ = -ia cos@l - sin Cpoe 

z=o: u =o, D*u -Maa*e=O, De-BiO=O, Q,=O 

z=l: u =Dv =O, D8+B,,8=0, DQ+sin@=O 

When cp = 7r/2 these problems are identical. If cp f n/2, the solutions Ma(a) are qualitatively different. 
The fact that the problems are identical when cp = 7112 is natural - in this case the transfer acceleration 
w, in (1.1) can be included in the pressure from the beginning and one can use the Oberbek- 
Boussinesq equations. 
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